Long term effects of eating dairy when lactose intolerant

Research has linked the high fat content and hormones in milk, cheese, and other dairy products to breast cancer.

One study of nearly 10,000 women found that those who consume low-fat diets have a 23% lower risk for breast cancer recurrence. They also have a 17% lower risk of dying from the disease.

A 2017 study funded by the National Cancer Institute that compared the diets of women diagnosed with breast cancer to those without breast cancer found that those who consumed the most American, cheddar, and cream cheeses had a 53% higher risk for breast cancer.

The Life After Cancer Epidemiology study found that, among women previously diagnosed with breast cancer, those consuming one or more servings of high-fat dairy products (e.g., cheese, ice cream, whole milk) daily had a 49% higher breast cancer mortality, compared with those consuming less than one-half serving daily.

Research funded by the National Cancer Institute, the National Institutes of Health, and the World Cancer Research Fund, found that women who consumed 1/4 to 1/3 cup of cow’s milk per day had a 30% increased chance for breast cancer. One cup per day increased the risk by 50%, and 2-3 cups were associated with an 80% increased chance of breast cancer. But the study cites research showing that vegans, but not lacto-ovo-vegetarians, experience less breast cancer than nonvegetarians. 

Regular consumption of dairy products has also been linked to prostate cancer.

High intakes of dairy products including whole and low-fat milk increase the risk for prostate cancer, according to a meta-analysis that looked at 32 studies. In another study, men who consumed three or more servings of dairy products a day had a 141% higher risk for death due to prostate cancer compared to those who consumed less than one serving. 

But avoiding dairy products and eating a more plant-based diet may help protect the prostate. A study published in the American Journal of Clinical Nutritionfound that men who followed a vegan diet had a 35% lower prostate cancer risk than those following a nonvegetarian, lacto-ovo-vegetarian, pesco-vegetarian, or semi-vegetarian diet. 

1. Grant W.B., Garland C.F. The association of solar ultraviolet B (UVB) with reducing risk of cancer: Multifactorial ecologic analysis of geographic variation in age-adjusted cancer mortality rates. Anticancer Res. 2006;26:2687–2699. [PubMed] [Google Scholar]

2. Grant W.B. The role of geographical ecological studies in identifying diseases linked to UVB exposure and/or vitamin D. Dermatoendocrinol. 2016;8:e1137400. doi: 10.1080/19381980.2015.1137400. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Shrier I., Szilagyi A., Correa J.A. Impact of lactose containing foods and the genetics of lactase on diseases: An analytical review of population data. Nutr. Cancer. 2008;60:292–300. doi: 10.1080/01635580701745301. [PubMed] [CrossRef] [Google Scholar]

4. Lember M., Torniainen S., Kull M., Kallikorm R., Saadla P., Rajasalu T., Komu H., Järvelä I. Lactase non-persistence and milk consumption in Estonia. World J. Gastroenterol. 2006;12:7329–7331. doi: 10.3748/wjg.v12.i45.7329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Almon R., Sjöström M., Nilsson T.K. Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. J. Nutr. Sci. 2013;2:e26. doi: 10.1017/jns.2013.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. He T., Venema K., Priebe M., Welling G., Brummer R., Vonk R. The role of colonic metabolism in lactose intolerance. Eur. J. Clin. Investig. 2008;38:541–547. doi: 10.1111/j.1365-2362.2008.01966.x. [PubMed] [CrossRef] [Google Scholar]

7. Szilagyi A., Leighton H., Burstein B., Shrier I. Significant positive correlation between sunshine and lactase nonpersistence in Europe May implicate both in similarly altering risks for some diseases. Nutr. Cancer. 2011;63:1–9. doi: 10.1080/01635581.2011.596641. [PubMed] [CrossRef] [Google Scholar]

8. Brüssow H. Nutrition, population growth and disease: A short history of lactose. Environ. Microbiol. 2013;15:2154–2161. doi: 10.1111/1462-2920.12117. [PubMed] [CrossRef] [Google Scholar]

9. Kuhn R., Low I. The occurrence of lactose in the plant kingdom. Chem. Ber. 1949;82:479–481. doi: 10.1002/cber.19490820607. [CrossRef] [Google Scholar]

10. Toba T., Nagashima S., Adachi S. Is lactose really present in plants? J. Sci. Food Agric. 1991;54:305–308. doi: 10.1002/jsfa.2740540217. [CrossRef] [Google Scholar]

11. Schaafsma G. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int. Dairy J. 2008;18:458–465. doi: 10.1016/j.idairyj.2007.11.013. [CrossRef] [Google Scholar]

12. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162. doi: 10.1093/glycob/cws074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Wijesinha-Bettoni R., Burlingame B. Milk and Dairy Product Composition. Food Agriculture Organization (FAO); Rome, Italy: 2013. [Google Scholar]

14. Holden H.M., Rayment I., Thoden J.B. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003;278:43885–43888. doi: 10.1074/jbc.R300025200. [PubMed] [CrossRef] [Google Scholar]

15. Demirbas D., Coelho A.I., Rubio-Gozalbo M.E., Berry G.T. Hereditary galactosemia. Metabolism. 2018;83:188–196. doi: 10.1016/j.metabol.2018.01.025. [PubMed] [CrossRef] [Google Scholar]

16. Day A.J., Cañada F.J., Díaz J.C., Kroon P.A., Mclauchlan R., Faulds C.B., Plumb G.W., Morgan M.R., Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468:166–170. doi: 10.1016/S0014-5793(00)01211-4. [PubMed] [CrossRef] [Google Scholar]

17. Zecca L., Mesonero J.E., Stutz A., Poirée J.C., Giudicelli J., Cursio R., Gloor S.M., Semenza G. Intestinal lactase-phlorizin hydrolase (LPH): The two catalytic sites; the role of the pancreas in pro-LPH maturation. FEBS Lett. 1998;435:225–228. doi: 10.1016/S0014-5793(98)01076-X. [PubMed] [CrossRef] [Google Scholar]

18. Lawrence R.A., Lawrence R.M. Breastfeeding: A Guide for the Medical Profession. 8th ed. Elsevier; Philadelphia, PA, USA: 2016. pp. 56–90. [Google Scholar]

19. Gilat T., Russo S., Gelman-Malachi E., Aldor T.A. Lactase in man: A nonadaptable enzyme. Gastroenterology. 1972;62:1125–1127. [PubMed] [Google Scholar]

20. Swallow D.M. Genetics of lactase persistence and lactose intolerance. Ann. Hum. Genet. 2003;37:197–219. doi: 10.1146/annurev.genet.37.110801.143820. [PubMed] [CrossRef] [Google Scholar]

21. Kruse T.A., Bolund L., Grzeschik K.H., Ropers H.H., Sjöström H., Norén O., Mantei N., Semenza G. The human lactase-phlorizin gene is located on chromosome 2. FEBS Lett. 1988;240:123–126. doi: 10.1016/0014-5793(88)80352-1. [PubMed] [CrossRef] [Google Scholar]

22. Enattah N.S., Jensen T.G., Nielsen M., Lewinski R., Kuokkanen M., Rasinpera H., Khalil I.F. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am. J. Hum. Genet. 2008;82:57–72. doi: 10.1016/j.ajhg.2007.09.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Ingram C.J., Mulcare C.A., Itan Y., Thomas M.G., Swallow D.M. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 2009;124:579–591. doi: 10.1007/s00439-008-0593-6. [PubMed] [CrossRef] [Google Scholar]

24. Ranciaro A., Campbell M.C., Hirbo J.B., Ko W.-Y., Froment A., Anagnostou P., Omar S.A. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am. J. Hum. Genet. 2014;94:496–510. doi: 10.1016/j.ajhg.2014.02.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Tishkoff S.A., Reed F.A., Ranciaro A., Voight B.F., Babbitt C.C., Silverman J.S., Powell K., Mortensen H.M., Hirbo J.B., Osman M., et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007;39:31–40. doi: 10.1038/ng1946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Labrie V., Buske O.J., Oh E., Jeremian R., Ptak C., Gasiūnas G., Maleckas A., Petereit R., Žvirbliene A., Adamonis K., et al. Lactase non persistence is directed by DNA-variation-dependent epigenetic aging. Nat. Struct. Mol. Biol. 2016;23:566–573. doi: 10.1038/nsmb.3227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Oh E., Jeremian R., Oh G., Groot D., Susic M., Lee K., Foy K., Laird P.W., Petronis A., Labrie V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci. Rep. 2017;7:41843. doi: 10.1038/srep41843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Lewinsky R.H., Jensen T.G., Møller J., Stensballe A., Olsen J., Troelsen J.T. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 2005;14:3945–3953. doi: 10.1093/hmg/ddi418. [PubMed] [CrossRef] [Google Scholar]

29. Olsen L., Bressendorff S., Troelsen J.T., Olsen J. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G220–G226. doi: 10.1152/ajpgi.00449.2004. [PubMed] [CrossRef] [Google Scholar]

30. Jensen T.G., Liebert A., Lewinsky R., Swallow D.M., Olsen J., Troelsen J.T. The −14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity. Hum. Genet. 2011;130:483–493. doi: 10.1007/s00439-011-0966-0. [PubMed] [CrossRef] [Google Scholar]

31. Fumery M., Speca S., Langlois A., Davila A.M., Dubuquoy C., Grauso M., Martin-Mena A., Figeac M., Metzger D., Rousseaux C., et al. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates lactase expression and activity in the gut. EMBO Mol. Med. 2017;9:1471–1481. doi: 10.15252/emmm.201707795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Gerbault P., Moret C., Currat M., Sanchez-Mazas A. Impact of selection and demography on the diffusion of lactase persistence. PLoS ONE. 2000;4:e6369. doi: 10.1371/journal.pone.0006369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Storhaug C.L., Fosse S.K., Fadnes L.T. Country, regional, and global estimates for lactose malabsorption in adults: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017;2:738–746. doi: 10.1016/S2468-1253(17)30154-1. [PubMed] [CrossRef] [Google Scholar]

34. Fazeli W., Kaczmarek S., Kirschstein M., Santer R. A novel mutation within the lactase gene (LCT): The first report of congenital lactase deficiency diagnosed in Central Europe. BMC Gastroenterol. 2015;15 doi: 10.1186/s12876-015-0316-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Uchida N., Sakamoto O., Irie M., Abukawa D., Takeyama J., Kure S., Tsuchiya S. Two novel mutations in the lactase gene in a Japanese infant with congenital lactase deficiency. Tohoku J. Exp. Med. 2012;227:69–72. doi: 10.1620/tjem.227.69. [PubMed] [CrossRef] [Google Scholar]

36. Robayo-Torres C.C., Nichols B.L. Molecular differentiation of congenital lactase deficiency from adult-type hypolactasia. Nutr. Rev. 2007;65:95. doi: 10.1111/j.1753-4887.2007.tb00286.x. [PubMed] [CrossRef] [Google Scholar]

37. Torniainen S., Freddara R., Routi T., Gijsbers C., Catassi C., Höglund P., Savilahti E., Järvelä I. Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD) BMC Gastroenterol. 2009;9:8. doi: 10.1186/1471-230X-9-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Saarela T., Similä S., Koivisto M. Hypercalcemia and nephrocalcinosis in patients with congenital lactase deficiency. J. Pediatr. 1995;6:920–923. doi: 10.1016/S0022-3476(95)70028-5. [PubMed] [CrossRef] [Google Scholar]

39. Weaver L.T., Laker M.F., Nelson R. Neonatal intestinal lactase activity. Arch. Dis. Child. 1986;61:896–899. doi: 10.1136/adc.61.9.896. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Francavilla R., Calasso M., Calace L., Siragusa S., Ndagijimana M., Vernocchi P., Guerzoni E. Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2012;23:420–427. doi: 10.1111/j.1399-3038.2012.01286.x. [PubMed] [CrossRef] [Google Scholar]

41. Tan M.L.N., Muhardi L., Osatakul S., Hegar B., Vandenplas Y., Ludwig T., Bindels J., Van der Beek E.M., Quak S.H. An electronic questionnaire survey evaluating the perceived prevalence and practices of lactose intolerance in 1 to 5 year old children in South East Asia. Pediatr. Gastroenterol. Hepatol. Nutr. 2018;21:170–175. doi: 10.5223/pghn.2018.21.3.170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Sahi T. Genetics and epidemiology of adult-type hypolactasia. Scand. J. Gastroenterol. 1994;29:7–20. doi: 10.3109/00365529409091740. [PubMed] [CrossRef] [Google Scholar]

43. Seppo L., Tuure T., Korpela R., Järvelä I., Rasinperä H., Sahi T. Can primary hypolactasia manifest itself after the age of 20 years? A two-decade follow-up study. Scand. J. Gastroenterol. 2008;43:1082–1087. doi: 10.1080/00365520802095485. [PubMed] [CrossRef] [Google Scholar]

44. Bayless T.M., Christopher N.L. Disaccharidase deficiency. Am. J. Clin. Nutr. 1969;22:181–190. doi: 10.1093/ajcn/22.2.181. [PubMed] [CrossRef] [Google Scholar]

45. Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., Schmulson M., Valdovinos M., Zakko S., Pimentel M. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American Consensus. Am. J. Gastroenterol. 2017;112:775–784. doi: 10.1038/ajg.2017.46. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Dzialanski Z., Barany M., Engfeldt P., Magnuson A., Olsson L.A., Nilsson T.K. Lactase persistence versus lactose intolerance: Is there an intermediate phenotype? Clin. Biochem. 2016;49:248–252. doi: 10.1016/j.clinbiochem.2015.11.001. [PubMed] [CrossRef] [Google Scholar]

47. Knudsen C.D., Di Palma J.A. Carbohydrate challenge tests: Do you need to measure methane? South Med. J. 2012;105:251–253. doi: 10.1097/SMJ.0b013e318252d428. [PubMed] [CrossRef] [Google Scholar]

48. Romagnuolo J., Schiller D., Bailey R.J. Using breath tests wisely in a gastroenterology practice: An evidence-based review of indications and pitfalls in interpretation. Am. J. Gastroenterol. 2002;97:1113–1126. doi: 10.1111/j.1572-0241.2002.05664.x. [PubMed] [CrossRef] [Google Scholar]

49. Marton A., Xue X., Szilagyi A. Meta-analysis: The diagnostic accuracy of lactose breath hydrogen or lactose tolerance tests for predicting the North European lactase polymorphism C/T-13910. Aliment. Pharmacol. Ther. 2012;4:429–440. doi: 10.1111/j.1365-2036.2011.04962.x. [PubMed] [CrossRef] [Google Scholar]

50. Furnari M., Bonfanti D., Parodi A., Franzè J., Savarino E., Bruzzone L., Savarino V. A comparison between lactose breath test and quick test on duodenal biopsies for diagnosing lactase deficiency in patients with self-reported lactose intolerance. J. Gastroenterol. 2013;47:148–152. doi: 10.1097/MCG.0b013e31824e9132. [PubMed] [CrossRef] [Google Scholar]

51. Grant J.D., Bezerra J.A., Thompson S.H., Lemen R.J., Koldovsky O., Udall J.N. Assessment of lactose absorption by measurement of urinary galactose. Gastroenterology. 1989;97:895–899. doi: 10.1016/0016-5085(89)91494-7. [PubMed] [CrossRef] [Google Scholar]

52. Bond J.H., Levitt M.D. Quantitative measurement of lactose absorption. Gastroenterology. 1976;70:1058–1062. [PubMed] [Google Scholar]

53. Hertzler S.R., Huynh B.-C.L., Savaiano D.A. How much lactose is low lactose? J. Am. Diet. Assoc. 1996;96:243–246. doi: 10.1016/S0002-8223(96)00074-0. [PubMed] [CrossRef] [Google Scholar]

54. Vesa T.H., Korpela R.A., Sahi T. Tolerance to small amounts of lactose in lactose maldigesters. Am. J. Clin. Nutr. 1996;64:197–201. doi: 10.1093/ajcn/64.2.197. [PubMed] [CrossRef] [Google Scholar]

55. Suarez F.L., Savaiano D.A., Levitt M.D. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. N. Engl. J. Med. 1995;333:1–4. doi: 10.1056/NEJM199507063330101. [PubMed] [CrossRef] [Google Scholar]

56. Suarez F.L., Savaiano D., Arbisi P., Levitt M.D. Tolerance to the daily ingestion of two cups of milk by individuals claiming lactose intolerance. Am. J. Clin. Nutr. 1997;65:1502–1506. doi: 10.1093/ajcn/65.5.1502. [PubMed] [CrossRef] [Google Scholar]

57. Oku T., Nakamura S., Ichinose M. Maximum permissive dosage of lactose and lactitol for transitory diarrhea, and utilizable capacity for lactose in Japanese female adults. J. Nutr. Sci. Vitam. 2005;51:51–57. doi: 10.3177/jnsv.51.51. [PubMed] [CrossRef] [Google Scholar]

58. Eadala P., Waud J., Matthews S., Green J., Campbell A. Quantifying the ‘hidden’lactose in drugs used for the treatment of gastrointestinal conditions. Aliment. Pharmacol. Ther. 2009;29:677–687. doi: 10.1111/j.1365-2036.2008.03889.x. [PubMed] [CrossRef] [Google Scholar]

59. Montalto M., Gallo A., Santoro L., D’onofrio F., Curigliano V., Covino M., Gasbarrini G. Low-dose lactose in drugs neither increases breath hydrogen excretion nor causes gastrointestinal symptoms. Aliment. Pharmacol. Ther. 2008;28:1003–1012. doi: 10.1111/j.1365-2036.2008.03815.x. [PubMed] [CrossRef] [Google Scholar]

60. Dehkordi N., Rao D., Warren A., Chawan C. Lactose malabsorption as influenced by chocolate milk, skim milk, sucrose, whole milk, and lactic cultures. J. Am. Diet. Assoc. 1995;95:484–486. doi: 10.1016/S0002-8223(95)00126-3. [PubMed] [CrossRef] [Google Scholar]

61. Laxminarayan S., Reifman J., Edwards S.S., Wolpert H., Steil G.M. Bolus estimation—Rethinking the effect of meal fat content. Diabates Technol. Ther. 2015;17:860–866. doi: 10.1089/dia.2015.0118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Villar J., Kestler E., Castillo P., Juarez A., Menendez R., Solomons N.W. Improved lactose digestion during pregnancy: A case of physiologic adaptation? Obstet. Gynecol. 1988;71:697–700. [PubMed] [Google Scholar]

63. Szilagyi A., Salomon R., Seidman E. Influence of loperamide on lactose handling and oral-caecal transit time. Aliment. Pharmacol. Ther. 1996;10:765–770. doi: 10.1046/j.1365-2036.1996.45187000.x. [PubMed] [CrossRef] [Google Scholar]

64. Kelle J., Bassotti G., Clarke J., Dinning P., Fox M., Grover M., Hellström P.M., Ke M., Layer P., Malagelada C., et al. International working group for disorders of gastrointestinal motility and function.expert consensus document: Advances in the diagnosis and classification of gastric and intestinal motility disorders. Nat. Rev. Gastroenterol. Hepatol. 2018;15:291–308. doi: 10.1038/nrgastro.2018.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Schmulson M.J., Drossman D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017;23:151–163. doi: 10.5056/jnm16214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Savaiano D.A., Boushey C.J., McCabe G.P. Lactose intolerance symptoms assessed by meta-analysis: A grain of truth that leads to exaggeration. J. Nutr. 2006;136:1107–1113. doi: 10.1093/jn/136.4.1107. [PubMed] [CrossRef] [Google Scholar]

67. Jellema P., Schellevis F.G., van der Windt D.A., Kneepkens C.M., van der Horst H.E. Lactose malabsorption and intolerance: A systematic review on the diagnostic value of gastrointestinal symptoms and self-reported milk intolerance. QJM. 2010;103:555–572. doi: 10.1093/qjmed/hcq082. [PubMed] [CrossRef] [Google Scholar]

68. Matthews S.B., Campbell A.K. When sugar is not so sweet. Lancet. 2000;15:1330. doi: 10.1016/S0140-6736(00)02116-4. [PubMed] [CrossRef] [Google Scholar]

69. Matthews S.B., Waud J.P., Roberts A.G., Campbell A.K. Systemic lactose intolerance: A new perspective on an old problem. Postgrad. Med. J. 2005;81:167–173. doi: 10.1136/pgmj.2004.025551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Eadala P., Matthews S.B., Waud J.P., Geen J.T., Campbell A.K. Association of lactose sensitivity with inflammatory bowel disease–demonstrated by analysis of genetic polymorphism, breath gases and symptoms. Aliment. Pharmacol. Ther. 2011;34:735–746. doi: 10.1111/j.1365-2036.2011.04799.x. [PubMed] [CrossRef] [Google Scholar]

71. Ledochowski M., Sperner-Unterweger B., Fuchs D. Lactose malabsorption is associated with early signs of mental depression in females (A Preliminary Report) Digest. Dis. Sci. 1998;43:2513–2517. doi: 10.1023/A:1026654820461. [PubMed] [CrossRef] [Google Scholar]

72. Flaten M.A., Simonsen T., Olsen H. Drug-related information generates placebo and nocebo responses that modify the drug response. Psychosom. Med. 1999;61:250–255. doi: 10.1097/00006842-199903000-00018. [PubMed] [CrossRef] [Google Scholar]

73. Briet F., Pochart P., Marteau P., Flourie B., Arrigoni E., Rambaud J.C. Improved clinical tolerance to chronic lactose ingestion in subjects with lactose intolerance: A placebo effect? Gut. 1997;41:632–635. doi: 10.1136/gut.41.5.632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Vernia P., Di Camillo M., Foglietta T., Avallone V.E., De Carolis A. Diagnosis of lactose intolerance and the “nocebo” effect: The role of negative expectations. Dig. Liver Dis. 2010;42:616–619. doi: 10.1016/j.dld.2010.02.005. [PubMed] [CrossRef] [Google Scholar]

75. Tack J., Talley N.J., Camilleri M., Holtmann G., Hu P., Malagelada J.R., Stanghellini V. Functional gastroduodenal disorders. Gastroenterology. 2006;130:1466–1479. doi: 10.1053/j.gastro.2005.11.059. [PubMed] [CrossRef] [Google Scholar]

76. Talley N.J. Decade in review-FGIDs: ‘Functional’ gastrointestinal disorders—A paradigm shift. Nat. Rev. Gastroenterol. Hepatol. 2014;11:649–650. doi: 10.1038/nrgastro.2014.163. [PubMed] [CrossRef] [Google Scholar]

77. Ford A.C., Lacy B.E., Talley N.J. Irritable bowel syndrome. N. Engl. J. Med. 2017;2017 29:2566–2578. doi: 10.1056/NEJMra1607547. [PubMed] [CrossRef] [Google Scholar]

78. Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018;6:133–148. doi: 10.1016/j.jcmgh.2018.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Barr S.I. Perceived lactose intolerance in adult Canadians: A national survey. Appl. Physiol. Nutr. Metab. 2013;38:830–835. doi: 10.1139/apnm-2012-0368. [PubMed] [CrossRef] [Google Scholar]

80. Farup P., Monsbakken K., Vandvik P. Lactose malabsorption in a population with irritable bowel syndrome. Scand. J. Gastroenterol. 2004;39:645–649. doi: 10.1080/00365520410005405. [PubMed] [CrossRef] [Google Scholar]

81. Yang J., Deng Y., Chu H., Cong Y., Zhao J., Pohl D., Fox M. Prevalence and presentation of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2013;3:262–268. doi: 10.1016/j.cgh.2012.11.034. [PubMed] [CrossRef] [Google Scholar]

82. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015;28:203–209. [PMC free article] [PubMed] [Google Scholar]

83. Lisker R., Solomons N.W., Briceno R.P., Mata M.R. Lactase and placebo in the management of the irritable bowel syndrome: A double-blind, cross-over study. Am. J. Gastroenterol. 1989;84:756–762. [PubMed] [Google Scholar]

84. Vesa T.H., Seppo L.M., Marteau P.R., Sahi T., Korpela R. Role of irritable bowel syndrome in subjective lactose intolerance. Am. J. Clin. Nutr. 1998;67:710–715. doi: 10.1093/ajcn/67.4.710. [PubMed] [CrossRef] [Google Scholar]

85. Lovell R.M., Ford A.C. Global prevalence of and risk factors for irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2012;10:712–721. doi: 10.1016/j.cgh.2012.02.029. [PubMed] [CrossRef] [Google Scholar]

86. Szilagyi A., Xue X. Comparison of geographic distributions of irritable bowel syndrome with inflammatory bowel disease fail to support common evolutionary roots. Irritable bowel syndrome and inflammatory bowel diseases are not related by evolution. Med. Hypotheses. 2018;110:31–37. doi: 10.1016/j.mehy.2017.10.020. [PubMed] [CrossRef] [Google Scholar]

87. Yang J., Fox M., Cong Y., Chu H., Zheng X., Long Y., Fried M., Dai N. Lactose intolerance in irritable bowel syndrome patients with diarrhoea: The roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity. Aliment. Pharmacol. Ther. 2014;39:302–311. doi: 10.1111/apt.12582. [PubMed] [CrossRef] [Google Scholar]

88. Mishkin S. Dairy sensitivity, lactose malabsorption, and elimination diets in inflammatory bowel disease. Am. J. Clin. Nutr. 1997;65:564–567. doi: 10.1093/ajcn/65.2.564. [PubMed] [CrossRef] [Google Scholar]

89. Nolan-Clark D., Tapsell L.C., Hu R., Han D.Y., Ferguson L.R. Effects of dairy products on Crohn’s disease symptoms are influenced by fat content and disease location but not lactose content or disease activity status in a New Zealand population. J. Am. Diet. Assoc. 2011;1111:1165–1172. doi: 10.1016/j.jada.2011.05.004. [PubMed] [CrossRef] [Google Scholar]

90. Jianqin S., Leiming X., Lu X., Yelland G.W., Ni J., Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2016;15:35. doi: 10.1186/s12937-016-0147-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Pal S., Woodford K., Kukuljan S., Ho S. Milk intolerance, beta-casein and lactose. Nutrients. 2015;7:7285–7297. doi: 10.3390/nu7095339. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Høst A., Jacobsen H., Halken S., Holmenlund D. The natural history of cow’s milk protein allergy/intolerance. Eur. J. Clin. Nutr. 1995;49(Suppl. 1):S13–S18. [PubMed] [Google Scholar]

93. Wal J.M. Bovine milk allergenicity. Ann. Allergy Asthma Immunol. 2004;93:S2–S11. doi: 10.1016/S1081-1206(10)61726-7. [PubMed] [CrossRef] [Google Scholar]

94. Virta L.J., Kautiainen H., Kolho K.L. Symptoms suggestive of cow’s milk allergy in infancy and pediatric inflammatory bowel disease. Pediatr. Allergy Immunol. 2016;27:361–367. doi: 10.1111/pai.12551. [PubMed] [CrossRef] [Google Scholar]

95. Lam H.Y., Van Hoffen E., Michelsen A., Guikers K., Van Der Tas C., Bruijnzeel-Koomen C., Knulst A. Cow’s milk allergy in adults is rare but severe: Both casein and whey proteins are involved. Clin. Exp. Allergy. 2008;38:995–1002. doi: 10.1111/j.1365-2222.2008.02968.x. [PubMed] [CrossRef] [Google Scholar]

96. Paajanen L., Korpela R., Tuuren T., Honkanen J., Järvelä I., Ilonen J., Kokkonen J. Cow milk is not responsible for most gastrointestinal immune-like syndromes-evidence from a population-based study. Am. J. Clin. Nutr. 2005;82:1327–1335. doi: 10.1093/ajcn/82.6.1327. [PubMed] [CrossRef] [Google Scholar]

97. Suchy F., Brannon P., Carpenter T., Fernandez J., Gilsanz V., Gould J., Mennella J. National Institutes of Health Consensus Development Conference: Lactose intolerance and health. Ann. Intern. Med. 2010;152:792–796. doi: 10.7326/0003-4819-152-12-201006150-00248. [PubMed] [CrossRef] [Google Scholar]

98. Shetty S., Kapoor N., Bondu J.D., Thomas N., Paul T.V. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 2016;20:846–852. [PMC free article] [PubMed] [Google Scholar]

99. Heaney R.P. Dairy and bone health. J. Am. Coll. Nutr. 2009;28(Suppl. 1):82S–90S. doi: 10.1080/07315724.2009.10719808. [PubMed] [CrossRef] [Google Scholar]

100. Heaney R.P. Calcium, dairy products and osteoporosis. J. Am. Coll. Nutr. 2000;19(Suppl. 2):83S–99S. doi: 10.1080/07315724.2000.10718088. [PubMed] [CrossRef] [Google Scholar]

101. Matlik L., Savaiano D., McCabe G., VanLoan M., Blue C.L., Boushey C.J. Perceived milk intolerance is related to bone mineral content in 10- to 13-year-old female adolescents. Pediatrics. 2007;120:e669–e677. doi: 10.1542/peds.2006-1240. [PubMed] [CrossRef] [Google Scholar]

102. Morales E., Azocar L., Maul X., Perez C., Chianale J., Miquel J.F. The European lactase persistence genotype determines the lactase persistence state and correlates with gastrointestinal symptoms in the Hispanic and Amerindian Chilean population: A case-control and population-based study. BMJ Open. 2011;1:e000125. doi: 10.1136/bmjopen-2011-000125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Windey K., Houben E., Deroover L., Verbeke K. Contribution of colonic fermentation and fecal water toxicity to the pathophysiology of lactose-intolerance. Nutrients. 2015;7:7505–7522. doi: 10.3390/nu7095349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Lukito W., Malik S.G., Surono I.S., Wahlqvist M.L. From lactose intolerance to lactose nutrition. Asia Pac. J. Clin. Nutr. 2015;24:S1–S8. [PubMed] [Google Scholar]

105. Baldan A., Tagliati S., Saccomandi D., Brusaferro A., Busoli L., Scala A., Malaventura C., Maggiore G., Borgna-Pignatti C. Assessment of Lactose-Free Diet on the Phalangeal Bone Mineral Status in Italian Adolescents Affected by Adult-Type Hypolactasia. Nutrients. 2018;10:558. doi: 10.3390/nu10050558. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Balk E.M., Adam G.P., Langberg V.N., Earley A., Clark P., Ebeling P.R., Mithal A., Rizzoli R., Zerbini C.A.F., Pierroz D.D., et al. International Osteoporosis Foundation Calcium Steering Committee. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017;28:3315–3324. doi: 10.1007/s00198-017-4230-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Honkanen R., Pulkkinen P., Järvinen R., Kröger H., Lindstedt K., Tuppurainen M., Uusitupa M. Does lactose intolerance predispose to low bone density? A population-based study of perimenopausal Finnish women. Bone. 1996;19:23–28. doi: 10.1016/8756-3282(96)00107-X. [PubMed] [CrossRef] [Google Scholar]

108. Obermayer-Pietsch B.M., Bonelli C.M., Walter D.E., Kuhn R.J., Fahrleitner-Pammer A., Berghold A., Goessler W., Stepan V., Dobnig H., Leb G., et al. Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J. Bone Miner. Res. 2004;19:42–47. doi: 10.1359/jbmr.0301207. [PubMed] [CrossRef] [Google Scholar]

109. Enattah N., Välimäki V.V., Välimäki M.J., Löyttyniemi E., Sahi T., Järvelä I. Molecularly defined lactose malabsorption, peak bone mass and bone turnover rate in young finnish men. Calcif. Tissue Int. 2004;75:488–493. doi: 10.1007/s00223-004-0029-9. [PubMed] [CrossRef] [Google Scholar]

110. Goulding A., Taylor R.W., Keil D., Gold E., Lewis-Barned N.J., Williams S.M. Lactose malabsorption and rate of bone loss in older women. Age Ageing. 1999;28:175–180. doi: 10.1093/ageing/28.2.175. [PubMed] [CrossRef] [Google Scholar]

111. Di Stefano M., Veneto G., Malservisi S., Cecchetti L., Minguzzi L., Strocchi A., Corazza G.R. Lactose malabsorption and intolerance and peak bone mass. Gastroenterology. 2002;122:1793–1799. doi: 10.1053/gast.2002.33600. [PubMed] [CrossRef] [Google Scholar]

112. Wade S.W., Strader C., Fitzpatrick L.A., Anthony M.S., O’Malley C.D. Estimating prevalence of osteoporosis: Examples from industrialized countries. Arch. Osteoporos. 2014;9:182. doi: 10.1007/s11657-014-0182-3. [PubMed] [CrossRef] [Google Scholar]

113. Hernlund E., Svedb A., Ivergård M., Compston J., Cooper C., Stenmark J., McCloskey E.V., Jönsson B., Kanis J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) Arch. Osteoporos. 2013;8:136. doi: 10.1007/s11657-013-0136-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Thorning T.K., Bertram H.C., Bonjour J.P., de Groot L., Dupont D., Feeney E., Ipsen R., Lecerf J.M., Mackie A., McKinley M.C., et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017;105:1033–1045. doi: 10.3945/ajcn.116.151548. [PubMed] [CrossRef] [Google Scholar]

115. Brouwer-Brolsma E.M., Sluik D., Singh-Povel C.M., Feskens E.J.M. Dairy shows different associations with abdominal and BMI-defined overweight: Cross-sectional analyses exploring a variety of dairy products. Nutr. Metab. Cardiovasc. Dis. 2018;28:451–460. doi: 10.1016/j.numecd.2018.01.008. [PubMed] [CrossRef] [Google Scholar]

116. Drouin-Chartier J.P., Brassard D., Tessier-Grenier M., Côté J.A., Labonté M.È., Desroches S., Couture P., Lamarche B. Systematic Review of the Association between Dairy Product Consumption and Risk of Cardiovascular-Related Clinical Outcomes. Adv. Nutr. 2016;7:1026–1040. doi: 10.3945/an.115.011403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Wolf-Maier K., Cooper R.S., Kramer H., Banegas J.R., Giampaoli S., Joffres M.R., Poulter N., Primatesta P., Stegmayr B., Thamm M. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension. 2004;43:10–17. doi: 10.1161/01.HYP.0000103630.72812.10. [PubMed] [CrossRef] [Google Scholar]

118. Jayedi A., Zargar M.S. Dietary calcium intake and hypertension risk: A dose-response meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2018 doi: 10.1038/s41430-018-0275-y. [PubMed] [CrossRef] [Google Scholar]

119. Schwingshackl L., Schwedhelm C., Hoffmann G., Knüppel S., Iqbal K., Andriolo V., Bechthold A., Schlesinger S., Boeing H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017;8:793–803. doi: 10.3945/an.117.017178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Ralston R.A., Lee J.H., Truby H., Palermo C.E., Walker K.Z. A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J. Hum. Hypertens. 2012;26:3–13. doi: 10.1038/jhh.2011.3. [PubMed] [CrossRef] [Google Scholar]

121. Soedamah-Muthu S.S., Verberne L.D., Ding E.L., Engberink M.F., Geleijnse J.M. Dairy consumption and incidence of hypertension: A dose-response meta-analysis of prospective cohort studies. Hypertension. 2012;60:1131–1137. doi: 10.1161/HYPERTENSIONAHA.112.195206. [PubMed] [CrossRef] [Google Scholar]

122. Xu J.Y., Qin L.Q., Wang P.Y., Li W., Chang C. Effect of milk tripeptides on blood pressure: A meta-analysis of randomized controlled trials. Nutrition. 2008;24:933–940. doi: 10.1016/j.nut.2008.04.004. [PubMed] [CrossRef] [Google Scholar]

123. Cicero A.F., Aubin F., Azais-Braesco V., Borghi C. Do the lactotripeptides isoleucine-proline-proline and valine-proline-proline reduce systolic blood pressure in European subjects? A meta-analysis of randomized controlled trials. Am. J. Hypertens. 2013;26:442–449. doi: 10.1093/ajh/hps044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Timpson N.J., Greenwood C.M.T., Soranzo N., Lawson D.J., Richards J.B. Genetic architecture: The shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 2018;19:110–124. doi: 10.1038/nrg.2017.101. [PubMed] [CrossRef] [Google Scholar]

125. Hartwig F.P., Horta B.L., Smith G.D., de Mola C.L., Victora C.G. Association of lactase persistence genotype with milk consumption, obesity and blood pressure: A Mendelian randomization study in the 1982 Pelotas (Brazil) Birth Cohort, with a systematic review and meta-analysis. Int. J. Epidemiol. 2016;45:1573–1587. doi: 10.1093/ije/dyw074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Ding M., Huang T., Bergholdt H.K., Nordestgaard B.G., Ellervik C., Qi L., CHARGE Consortium Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. BMJ. 2017;356:j1000. doi: 10.1136/bmj.j1000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Bergholdt H.K., Nordestgaard B.G., Varbo A., Ellervik C. Milk intake is not associated with ischaemic heart disease in observational or Mendelian randomization analyses in 98,529 Danish adults. Int. J. Epidemiol. 2015;44:587–603. doi: 10.1093/ije/dyv109. [PubMed] [CrossRef] [Google Scholar]

128. Turner K.M., Keogh J.B., Clifton P.M. Dairy consumption and insulin sensitivity: A systematic review of short- and long-term intervention studies. Nutr. Metab. Cardiovasc. Dis. 2015;25:3–8. doi: 10.1016/j.numecd.2014.07.013. [PubMed] [CrossRef] [Google Scholar]

129. Morio B., Fardet A., Legrand P., Lecerf J.M. Involvement of dietary saturated fats, from all sources or of dairy origin only, in insulin resistance and type 2 diabetes. Nutr. Rev. 2016;74:33–47. doi: 10.1093/nutrit/nuv043. [PubMed] [CrossRef] [Google Scholar]

130. Bergholdt H.K., Nordestgaard B.G., Ellervik C. Milk intake is not associated with low risk of diabetes or overweight-obesity: A Mendelian randomization study in 97,811 Danish individuals. Am. J. Clin. Nutr. 2015;102:487–496. doi: 10.3945/ajcn.114.105049. [PubMed] [CrossRef] [Google Scholar]

132. Mendelian Randomization of Dairy Consumption Working Group Dairy Consumption and Body Mass Index among Adults. Mendelian Randomization Analysis of 184802 Individuals from 25 Studies. Clin. Chem. 2018;64:183–191. doi: 10.1373/clinchem.2017.280701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Cho E., Smith-Warner S.A., Spiegelman D., Beeson W.L., van den Brandt P.A., Colditz G.A., Folsom A.R., Fraser G.E., Freudenheim J.L., Giovannucci E., et al. Dairy foods, calcium, and colorectal cancer: A pooled analysis of 10 cohort studies. J. Natl. Cancer Inst. 2004;96:1015–1022. doi: 10.1093/jnci/djh285. [PubMed] [CrossRef] [Google Scholar]

134. Aune D., Lau R., Chan D.S., Vieira R., Greenwood D.C., Kampman E., Norat T. Dairy products and colorectal cancer risk: A systematic review and meta-analysis of cohort studies. Ann. Oncol. 2012;23:37–45. doi: 10.1093/annonc/mdr269. [PubMed] [CrossRef] [Google Scholar]

135. Szilagyi A., Nathwani U., Vinokuroff C., Correa J.A., Shrier I. The effect of lactose maldigestion on the relationship between dairy food intake and colorectal cancer: A systematic review. Nutr. Cancer. 2006;55:141–150. doi: 10.1207/s15327914nc5502_4. [PubMed] [CrossRef] [Google Scholar]

136. Hartman T.J., Albert P.S., Snyder K., Slattery M.L., Caan B., Paskett E., Iber F., Kikendall J.W., Marshall J., Shike M., et al. The association of calcium and vitamin D with risk of colorectal adenomas. J. Nutr. 2005;135:252–259. [PubMed] [Google Scholar]

137. Park S.-Y., Murphy S.P., Wilkens L.R., Nomura A.M., Henderson B.E., Kolonel L.N. Calcium and vitamin D intake and risk of colorectal cancer: The multiethnic cohort study. Am. J. Epidemiol. 2007;165:784–793. doi: 10.1093/aje/kwk069. [PubMed] [CrossRef] [Google Scholar]

138. Wallace K., Baron J.A., Cole B.F., Sandler R.S., Karagas M.R., Beach M.A., Haile R.W., Burke C.A., Pearson L.H., Mandel J.S., et al. Effect of calcium supplementation on the risk of large bowel polyps. J. Natl. Cancer Inst. 2004;96:921–925. doi: 10.1093/jnci/djh265. [PubMed] [CrossRef] [Google Scholar]

139. Weingarten M.A., Zalmanovici A., Yaphe J. Dietary calcium supplementation for preventing colorectal cancer and adenomatous polyps. Cochrane Database Syst. Rev. 2008 doi: 10.1002/14651858.CD003548.pub4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Baron J.A., Beach M., Mandel S., van Stolk R.U., Haile R.W., Sandler R.S., Rothstein R., Summers R.W., Snover D.C., Beck G.J., et al. Calcium supplements for the prevention of colorectal adenomas. N. Engl. J. Med. 1999;340:101–107. doi: 10.1056/NEJM199901143400204. [PubMed] [CrossRef] [Google Scholar]

141. Baron J.A., Barry E.L., Mott L.A., Rees J.R., Sandler R.S., Snover D.C., Bostick R.M., Ivanova A., Cole B.F., Ahnen D.J., et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015;373:1519–1530. doi: 10.1056/NEJMoa1500409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Crockett S.D., Barry E.L., Mott L.A., Ahnen D.J., Robertson D.J., Anderson J.C., Wallace K., Burke C.A., Bresalier R.S., Figueiredo J.C., et al. Calcium and vitamin D supplementation and increased risk of serrated polyps: Results from a randomized clinical trial. Gut. 2018 doi: 10.1136/gutjnl-2017-315242. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Zanabria R., Tellez A.M., Griffiths M., Corredig M. Milk fat globule membrane isolate induces apoptosis in HT-29 human colon cancer cells. Food Funct. 2013;4:222–230. doi: 10.1039/C2FO30189J. [PubMed] [CrossRef] [Google Scholar]

144. Narayanan A., Baskaran S.A., Amalaradjou M.A., Venkitanarayanan K. Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro. Int. J. Mol. Sci. 2015;16:5014–5027. doi: 10.3390/ijms16035014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Mohammadzadeh M., Faramarzi E., Mahdavi R., Nasirimotlagh B., Asghari Jafarabadi M. Effect of conjugated linoleic acid supplementation on inflammatory factors and matrix metalloproteinase enzymes in rectal cancer patients undergoing chemoradiotherapy. Integr. Cancer Ther. 2013;12:496–502. doi: 10.1177/1534735413485417. [PubMed] [CrossRef] [Google Scholar]

146. Xiao R., Badger T.M., Simme F.A. Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis. Mol. Cancer. 2005;4:1. doi: 10.1186/1476-4598-4-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Octoratou M., Merikas E., Malgarinos G., Stanciu C., Triantafillidis J.K.A. Prospective study of pre-illness diet in newly diagnosed patients with Crohn’s disease. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012;116:40–49. [PubMed] [Google Scholar]

148. Abubakar I., Myhill D.J., Hart A.R., Lake I.R., Harvey I., Rhodes J.M., Robinson R., Lobo A.J., Probert C.S., Hunter P.R. A case-control study of drinking water and dairy products in Crohn’s Disease–further investigation of the possible role of Mycobacterium avium paratuberculosis. Am. J. Epidemiol. 2007;165:776–783. doi: 10.1093/aje/kwk067. [PubMed] [CrossRef] [Google Scholar]

149. Opstelten J.L., Leenders M., Dik V.K., Chan S.S., van Schaik F.D., Khaw K.T., Luben R., Hallmans G., Karling P., Lindgren S., et al. Dairy Products, Dietary Calcium, and Risk of Inflammatory Bowel Disease: Results from a European Prospective Cohort Investigation. Inflamm. Bowel Dis. 2016;22:1403–1411. doi: 10.1097/MIB.0000000000000798. [PubMed] [CrossRef] [Google Scholar]

150. Cramer D.W., Harlow B.L., Willett W.C., Welch W.R., Bell D.A., Scully R.E., Ng W.G., Knapp R.C. Galactose consumption and metabolism in relation to the risk of ovarian cancer. Lancet. 1989;2:66–71. doi: 10.1016/S0140-6736(89)90313-9. [PubMed] [CrossRef] [Google Scholar]

151. Cramer D.W. Epidemiologic aspects of early menopause and ovarian cancer. Ann. N. Y. Acad. Sci. 1990;592:363–375. doi: 10.1111/j.1749-6632.1990.tb30347.x. [PubMed] [CrossRef] [Google Scholar]

152. Webb P.M., Bain C.J., Purdie D.M., Harvey P.W., Green A. Milk consumption, galactose metabolism and ovarian cancer (Australia) Cancer Causes Control. 1998;9:637–644. doi: 10.1023/A:1008891714412. [PubMed] [CrossRef] [Google Scholar]

153. Qin B., Moorman P.G., Alberg A.J., Barnholtz-Sloan J.S., Bondy M., Cote M.L., Funkhouser E., Peters E.S., Schwartz A.G., Terry P., et al. Dairy, calcium, vitamin D and ovarian cancer risk in African-American women. Br. J. Cancer. 2016;115:1122–1130. doi: 10.1038/bjc.2016.289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Faber M.T., Jensen A., Søgaard M., Høgdall E., Høgdall C., Blaakaer J., Kjaer S.K. Use of dairy products, lactose, and calcium and risk of ovarian cancer—Results from a Danish case-control study. Acta Oncol. 2012;51:454–464. doi: 10.3109/0284186X.2011.636754. [PubMed] [CrossRef] [Google Scholar]

155. Larsson S.C., Orsini N., Wolk A. Milk, milk products and lactose intake and ovarian cancer risk: A meta-analysis of epidemiological studies. Int. J. Cancer. 2006;118:431–441. doi: 10.1002/ijc.21305. [PubMed] [CrossRef] [Google Scholar]

156. Genkinger J.M., Hunter D.J., Spiegelman D., Anderson K.E., Arslan A., Beeson W.L., Buring J.E., Fraser G.E., Freudenheim J.L., Goldbohm R.A., et al. Dairy products and ovarian cancer: A pooled analysis of 12 cohort studies. Cancer Epidemiol. Prev. Biomark. 2006;15:364–372. doi: 10.1158/1055-9965.EPI-05-0484. [PubMed] [CrossRef] [Google Scholar]

157. Merritt M.A., Poole E.M., Hankinson S.E., Willett W.C., Tworoger S.S. Dairy food and nutrient intake in different life periods in relation to risk of ovarian cancer. Cancer Causes Control. 2014;25:795–808. doi: 10.1007/s10552-014-0381-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Koralek D.O., Bertone-Johnson E.R., Leitzmann M.F., Sturgeon S.R., Lacey J.V., Jr., Schairer C., Schatzkin A. Relationship between calcium, lactose, vitamin D, and dairy products and ovarian cancer. Nutr. Cancer. 2006;56:22–30. doi: 10.1207/s15327914nc5601_4. [PubMed] [CrossRef] [Google Scholar]

159. Mommers M., Schouten L.J., Goldbohm R.A., van den Brandt P.A. Dairy consumption and ovarian cancer risk in the Netherlands Cohort Study on Diet and Cancer. Br. J. Cancer. 2006;94:165–170. doi: 10.1038/sj.bjc.6602890. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Song X., Li Z., Ji X., Zhang D. Calcium Intake and the Risk of Ovarian Cancer: A Meta-Analysis. Nutrients. 2017;9:679. doi: 10.3390/nu9070679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Białek A., Tokarz A. Conjugated linoleic acid as a potential protective factor in prevention of breast cancer. Postepy Hig. Med. Dosw. 2013;67:6–14. doi: 10.5604/17322693.1028764. [PubMed] [CrossRef] [Google Scholar]

162. Davoodi H., Esmaeili S., Mortazavian A.M. Effects of milk and milk products consumption on cancer: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:249–264. doi: 10.1111/1541-4337.12011. [CrossRef] [Google Scholar]

163. Zang J., Shen M., Du S., Chen T., Zou S. The Association between Dairy Intake and Breast Cancer in Western and Asian Populations: A Systematic Review and Meta-Analysis. J. Breast Cancer. 2015;18:313–322. doi: 10.4048/jbc.2015.18.4.313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Dong J.Y., Zhang L., He K., Qin L.Q. Dairy consumption and risk of breast cancer: A meta-analysis of prospective cohort studies. Breast Cancer Res. Treat. 2011;127:23–31. doi: 10.1007/s10549-011-1467-5. [PubMed] [CrossRef] [Google Scholar]

165. Tian S.B., Yu J.C., Kang W.M., Ma Z.Q., Ye X., Cao Z.J. Association between dairy intake and gastric cancer: A meta-analysis of observational studies. PLoS ONE. 2014;9:e101728. doi: 10.1371/journal.pone.0101728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Guo Y., Shan Z., Ren H., Chen W. Dairy consumption and gastric cancer risk: A meta-analysis of epidemiological studies. Nutr. Cancer. 2015;67:555–568. doi: 10.1080/01635581.2015.1019634. [PubMed] [CrossRef] [Google Scholar]

167. Yang Y., Wang X., Yao Q., Qin L., Xu C. Dairy Product, Calcium Intake and Lung Cancer Risk: A Systematic Review with Meta-Analysis. Sci. Rep. 2016;6:20624. doi: 10.1038/srep20624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Qin L.Q., Xu J.Y., Wang P.Y., Tong J., Hoshi K. Milk consumption is a risk factor for prostate cancer in Western countries: Evidence from cohort studies. Asia Pac. J. Clin. Nutr. 2007;16:467–476. [PubMed] [Google Scholar]

169. Lu W., Chen H., Niu Y., Wu H., Xia D., Wu Y. Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutr. J. 2016;15:91. doi: 10.1186/s12937-016-0210-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Travis R.C., Appleby P.N., Siddiq A., Allen N.E., Kaaks R., Canzian F., Feller S., Tjønneland A., Føns-Johnsen N., Overvad K., et al. Genetic variation in the lactase gene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. Int. J. Cancer. 2013;132:1901–1910. doi: 10.1002/ijc.27836. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Harrison S., Lennon R., Holly J., Higgins J.P.T., Gardner M., Perks C., Gaunt T., Tan V., Borwick C., Emmet P., et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28:497–528. doi: 10.1007/s10552-017-0883-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Belfiore A., Malaguarnera R., Vella V., Lawrence M.C., Sciacca L., Frasca F., Morrione A., Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr. Rev. 2017;38:379–431. doi: 10.1210/er.2017-00073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Bergström R., Adami H.O., Möhner M., Zatonski W., Storm H., Ekbom A., Tretli S., Teppo L., Akre O., Hakulinen T. Increase in testicular cancer incidence in six European countries: A birth cohort phenomenon. J. Natl. Cancer Inst. 1996;88:727–733. doi: 10.1093/jnci/88.11.727. [PubMed] [CrossRef] [Google Scholar]

174. Park J.S., Kim J., Elghiaty A., Ham W.S. Recent global trends in testicular cancer incidence and mortality. Med. (Baltim.) 2018;97:e12390. doi: 10.1097/MD.0000000000012390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Davies T.W., Palmer C.R., Ruja E., Lipscombe J.M. Adolescent milk, dairy product and fruit consumption and testicular cancer. Br. J. Cancer. 1996;74:657–660. doi: 10.1038/bjc.1996.417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Stang A., Ahrens W., Baumgardt-Elms C., Stegmaier C., Merzenich H., de Vrese M., Schrezenmeir J., Jöckel K.H. Adolescent milk fat and galactose consumption and testicular germ cell cancer. Cancer Epidemiol. Prev. Biomark. 2006;15:2189–2195. doi: 10.1158/1055-9965.EPI-06-0372. [PubMed] [CrossRef] [Google Scholar]

177. McGlynn K.A., Sakoda L.C., Rubertone M.V., Sesterhenn I.A., Lyu C., Graubard B.I., Erickson R.L. Body size, dairy consumption, puberty, and risk of testicular germ cell tumors. Am. J. Epidemiol. 2007;165:355–363. doi: 10.1093/aje/kwk019. [PubMed] [CrossRef] [Google Scholar]

178. Wang J., Li X., Zhang D. Dairy Product Consumption and Risk of Non-Hodgkin Lymphoma: A Meta-Analysis. Nutrients. 2016;8:120. doi: 10.3390/nu8030120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Thorning T.K., Raben A., Tholstrup T., Soedamah-Muthu S.S., Givens I., Astrup A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016;60:32527. doi: 10.3402/fnr.v60.32527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Heine R.G., AlRefaee F., Bachina P., Deleon J.C., Geng L., Gong S., Madrazo J.A., Ngamphaiboon J., Ong C., Rogacion J.M. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children-common misconceptions revisited. World Allergy Organ. J. 2017;10:1–8. doi: 10.1186/s40413-017-0173-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Silanikove N., Leitner G., Merin U. The Interrelationships between lactose intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients. 2015;7:7312–7331. doi: 10.3390/nu7095340. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Rozenberg S., Body J.J., Bruyère O., Bergmann P., Brandi M.L., Cooper C., Devogelaer J.P., Gielen E., Goemaere S., Kaufman J.M., et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016;98:1–17. doi: 10.1007/s00223-015-0062-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Singhal S., Baker R.D., Baker S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy beverages. J. Ped. Gastroenterol. Nutr. 2017;64:799–805. doi: 10.1097/MPG.0000000000001380. [PubMed] [CrossRef] [Google Scholar]

185. Mathai J.K., Liu Y., Stein H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS) Br. J. Nutr. 2017;117:490–499. doi: 10.1017/S0007114517000125. [PubMed] [CrossRef] [Google Scholar]

187. Lehmann U., Hirche F., Stangl G.I., Hinz K., Westphal S., Dierkes J. Bioavailability of vitamin D(2) and D(3) in healthy volunteers, a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2013;98:4339–4345. doi: 10.1210/jc.2012-4287. [PubMed] [CrossRef] [Google Scholar]

188. Morency M.E., Birken C.S., Lebovic G., Chen Y., L’Abbé M., Lee G.J., Maguire J.L., TARGet Kids! Collaboration Association between noncow milk beverage consumption and childhood height. Am. J. Clin. Nutr. 2017;106:597–602. doi: 10.3945/ajcn.117.156877. [PubMed] [CrossRef] [Google Scholar]

190. Lin M.Y., Dipalma J.A., Martini M.C., Gross C.J., Harlander S.K., Savaiano D.A. Comparative effects of exogenous lactase (beta-galactosidase) preparations on in vivo lactose digestion. Dig. Dis. Sci. 1993;38:2022–2027. doi: 10.1007/BF01297079. [PubMed] [CrossRef] [Google Scholar]

191. Ibba I., Gilli A., Boi M.F., Usai P. Effects of exogenous lactase administration on hydrogen breath excretion and intestinal symptoms in patients presenting lactose malabsorption and intolerance. Biomed. Res. Int. 2014;2014:680196. doi: 10.1155/2014/680196. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. De Vrese M., Laue C., Offick B., Soeth E., Repenning F., Thoß A., Schrezenmeir J. A combination of acid lactase from Aspergillus oryzae and yogurt bacteria improves lactose digestion in lactose maldigesters synergistically: A randomized, controlled, double-blind cross-over trial. Clin. Nutr. 2015;34:394–399. doi: 10.1016/j.clnu.2014.06.012. [PubMed] [CrossRef] [Google Scholar]

193. Habte D., Sterby G., Jijalmassen B. Lactose malabsorption in Ethiopian children. Acta Paediatr. Scand. 1973;62:649–654. doi: 10.1111/j.1651-2227.1973.tb17080.x. [PubMed] [CrossRef] [Google Scholar]

194. Sadre M., Karbasi K. Lactose intolerance in Iran. Am. J. Clin. Nutr. 1979;32:1948–1954. doi: 10.1093/ajcn/32.9.1948. [PubMed] [CrossRef] [Google Scholar]

195. Hertzler S.R., Savaiano D.A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 1996;64:232–236. doi: 10.1093/ajcn/64.2.232. [PubMed] [CrossRef] [Google Scholar]

196. Szilagyi A., Malolepszy P., Yesovitch S., Nathwani U., Vinokuroff C., Cohen A., Xue X. Inverse Dose effect of pretest dietary lactose intake on breath hydrogen results and symptoms in lactase non persistent subjects. Dig. Dis. Sci. 2005;50:2178–2182. doi: 10.1007/s10620-005-3028-4. [PubMed] [CrossRef] [Google Scholar]

197. Szilagyi A., Rivard J., Fokeeff K. Improved parameters of lactose maldigestion using lactulose. Dig. Dis. Sci. 2001;46:1509–1519. doi: 10.1023/A:1010652223705. [PubMed] [CrossRef] [Google Scholar]

198. Jiang T., Savaiano D.A. In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation. J. Nutr. 1997;127:1489–1495. doi: 10.1093/jn/127.8.1489. [PubMed] [CrossRef] [Google Scholar]

199. Jiang T., Savaiano D.A. Modification of colonic fermentation by bifidobacteria and pH in vitro. Impact on lactose metabolism, short-chain fatty acid, and lactate production. Dig. Dis. Sci. 1997;42:2370–2377. doi: 10.1023/A:1018895524114. [PubMed] [CrossRef] [Google Scholar]

200. Szilagyi A., Shrier I., Heilpern D., Je J., Park S., Chong G., Lalonde C., Cote L.F., Lee B. Differential impact of lactose/lactase phenotype on colonic microflora. Can. J. Gastroenterol. Hepatol. 2010;24:373–379. doi: 10.1155/2010/649312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Li X., Yin J., Zhu Y., Wang X., Hu X., Bao W., Huang Y., Chen L., Chen S., Yang W., et al. Effects of whole milk supplementation on gut microbiota and cardiometabolic biomarkers in subjects with and without lactose malabsorption. Nutrients. 2018;10:1403. doi: 10.3390/nu10101403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Savaiano D.A., Ritter A.J., Klaenhammer T.R., James G.M., Longcore A.T., Chandler J.R., Walker W.A., Foyt H.L. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): A randomized, double-blind clinical trial. Nutr. J. 2013;12:160. doi: 10.1186/1475-2891-12-160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66. [PubMed] [CrossRef] [Google Scholar]

204. Savaiano D.A. Lactose digestion from yogurt: Mechanism and relevance. Am. J. Clin. Nutr. 2014;99(Suppl. 5):1251S–1255S. doi: 10.3945/ajcn.113.073023. [PubMed] [CrossRef] [Google Scholar]

205. He T., Priebe M.G., Vonk R.J., Welling G.W. Identification of bacteria with beta-galactosidase activity in faeces from lactase non-persistent subjects. FEMS Microbiol. Ecol. 2005;54:463–469. doi: 10.1016/j.femsec.2005.06.001. [PubMed] [CrossRef] [Google Scholar]

206. Riboulet-Bisson E., Sturme M.H., Jeffery I.B., O’Donnell M.M., Neville B.A., Forde B.M., Claesson M.J., Harris H., Gardiner G.E., Casey P.G., et al. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS ONE. 2012;7:e31113. doi: 10.1371/journal.pone.0031113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Ojetti V., Gigante G., Gabrielli M., Ainora M.E., Mannocci A., Lauritano E.C., Gasbarrini G., Gasbarrini A. The effect of oral supplementation with Lactobacillus reuteri or tilactase in lactose intolerant patients: Randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2010;14:163–170. [PubMed] [Google Scholar]

208. Malolepszy P., Shrier I., Szilagyi A. Adaptation to lactose may not be achieved by long term ingetsion of a multi-species containing probiotic: An extended study. Int. J. Probiotics Prebiotics. 2006;1:113–120. [Google Scholar]

209. Almeida C.C., Lorena S.L., Pavan C.R., Akasaka H.M., Mesquita M.A. Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr. Clin. Pract. 2012;27:247–251. doi: 10.1177/0884533612440289. [PubMed] [CrossRef] [Google Scholar]

210. Levri K.M., Ketvertis K., Deramo M., Merenstein J.H., D’Amico F. Do probiotics reduce adult lactose intolerance? A systematic review. J. Fam. Pract. 2005;54:613–620. [PubMed] [Google Scholar]

211. Oak S.J., Jha R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2018;57:1–9. doi: 10.1080/10408398.2018.1425977. [PubMed] [CrossRef] [Google Scholar]

212. Gibson P., Shepherd S. Personal view: Food for thought–western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment. Pharmacol. Therap. 2005;21:1399–1409. doi: 10.1111/j.1365-2036.2005.02506.x. [PubMed] [CrossRef] [Google Scholar]

213. Tuck C.J., Vanner S.J. Dietary therapies for functional bowel symptoms: Recent advances, challenges, and future directions. Neurogastroenterol. Motil. 2018;30 doi: 10.1111/nmo.13238. [PubMed] [CrossRef] [Google Scholar]

214. O’Keeffe M., Jansen C., Martin L., Williams M., Seamark L., Staudacher H., Lomer M. Long-term impact of the low-FODMAP diet on gastrointestinal symptoms, dietary intake, patient acceptability, and healthcare utilization in irritable bowel syndrome. Neurogastroenterol. Motil. 2017;30:e13154. doi: 10.1111/nmo.13154. [PubMed] [CrossRef] [Google Scholar]

215. Wilder-Smith C.H., Olesen S.S., Materna A., Drewes A.M. Predictors of response to a low-FODMAP diet in patients with functional gastrointestinal disorders and lactose or fructose intolerance. Aliment. Pharmacol. Ther. 2017;45:1094–1106. doi: 10.1111/apt.13978. [PubMed] [CrossRef] [Google Scholar]

216. Aziz I., Trott N., Briggs R., North J.R., Hadjivassiliou M., Sanders D.S. Efficacy of a gluten-free diet in subjects with irritable bowel syndrome-diarrhea unaware of their HLA-DQ2/8 genotype. Clin. Gastroenterol. Hepatol. 2016;14:696–703. doi: 10.1016/j.cgh.2015.12.031. [PubMed] [CrossRef] [Google Scholar]

217. El-Salhy M., Gunnar Hatlebakk J., Helge Gilja O., Hausken T. The relation between celiac disease, nonceliac gluten sensitivity and irritable bowel syndrome. Nutr. J. 2015;69:519–524. doi: 10.1186/s12937-015-0080-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Skodje G.I., Sarna V.K., Minelle I.H., Rolfsen K.L., Muir J.G., Gibson P.R., Veierød M.B., Henriksen C., Lundin K.E.A. Fructan, Rather Than Gluten, Induces Symptoms in Patients With Self-Reported Non-Celiac Gluten Sensitivity. Gastroenterology. 2018;154:529–539. doi: 10.1053/j.gastro.2017.10.040. [PubMed] [CrossRef] [Google Scholar]

219. Krogsgaard L., Lyngesen M., Bytzer P. Systematic review: Quality of trials on the symptomatic effects of the low FODMAP diet for irritable bowel syndrome. Aliment. Pharmacol. Therap. 2017;45:1506–1513. doi: 10.1111/apt.14065. [PubMed] [CrossRef] [Google Scholar]

220. Dionne J., Yuan Y., Chey W.D., Lacy B.E., Saito Y.A., Quigley E.M.M., Moayyedi P.A. Systematic Review and Meta-Analysis Evaluating the Efficacy of a Gluten-Free Diet and a Low FODMAPs Diet in Treating Symptoms of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2018;113:1290–1300. doi: 10.1038/s41395-018-0195-4. [PubMed] [CrossRef] [Google Scholar]

What happens if you are lactose intolerant and you keep eating dairy?

If people with lactose intolerance eat dairy products, the lactose from these foods pass into their intestines, which can lead to gas, cramps, a bloated feeling, and diarrhea. Some people can have small amounts of dairy without problems. Others have a lot of stomach trouble and need to avoid all dairy products.

What happens if you ignore lactose intolerance long term?

Lactose Intolerance can cause serious digestive issues. If left untreated, lactose intolerance can cause severe digestive problems for those who continue to consume foods that contain lactose. The most common symptoms of lactose intolerance include: Bloating. Gas pains in the stomach and chest.

How long does lactose intolerance last after eating dairy?

Symptoms of lactose intolerance usually begin between 30 minutes and 2 hours after consuming dairy. The symptoms last until the lactose passes through your digestive system, up to about 48 hours later. The severity of your symptoms can be mild or severe depending on how much dairy you eat.

Can lactose intolerance worsen over time?

Can lactose intolerance symptoms get worse? Lactose intolerance often gets worse as you age and your body loses the ability to produce lactase. Still, the severity of symptoms is usually relative to the amount of lactose you consume.